
36 The Delphi Magazine Issue 71

Under Construction:
Kylix Desktop Does CGI Too
by Bob Swart

In this article, we’ll see how we
can use Kylix Desktop Developer

to create web server applications
for the Apache web server running
on Linux. Remember that Kylix
Server Developer is the (expen-
sive) high-end version, which is
officially sold as the version to use
when creating web server applica-
tions. But Kylix Desktop Developer
can also do this, and its price was
recently slashed to £139 in the UK
and $199 in the USA [This is sup-
posed to be a limited time offer, but I
for one think Borland would be plain
crazy to raise the price again. Ed].

Console Applications
First of all, I shall assume that you
have Kylix installed on your
machine, as well as the Apache
web server (like last time when we
used WebBroker in Kylix Server
Developer). Start Kylix, and close
the default project. For web server
applications ‘the hard way’ we
need a console application, so
choose File | New and select the
Console ... icon (on my machine, I
don’t see the full title). This will
give you a new empty console

application, consisting of just four
lines of code:

program Project1;
{$APPTYPE CONSOLE}
begin
end.

While this is certainly not
earth-shattering, when you com-
pile this application, you will see
that the minimum do-nothing
application in Kylix generates
14,916 bytes of machine code
(14,908 bytes if you remove the
{$APPTYPE CONSOLE} line too). This
program does nothing, of course,
but it serves as a reminder to make
the point that web applications
developed this way are really small
compared to WebBroker applica-
tions. And small means fast and
resource-efficient.

CGI Applications
Web server applica-
tions come in different
types. The easiest
type to make is CGI,
which stands for
Common Gateway
Interface: the commu-
nication protocol
between a form on a
web browser page
(the client) and an
application running
on the web server (the
server). The applica-
tion is usually called a
CGI script (when writ-
ten in an interpreted
language like Perl) or

CGI application (when written in a
compiled language like C/C++, or a
development environment like
Delphi or Kylix).

A CGI application interacts with
the user (who inputs data in a
browser) by reading the standard
input, and writing to standard
output. The output of a CGI
application usually consists of
HTML, but we can generate other
results as well, such as images or
even streaming audio or video.

Content And Type
Before we can generate HTML (or
any other output format, such as
binary image data), we first have to
return the MIME content-type,
followed by an empty line. In the
case of HTML, that can be done as
follows:

writeln(
‘content-type: text/html’);

writeln;

Obviously, other content-types
are possible, such as image/gif or
image/jpeg, always followed by an
empty line before the data itself
(binary in the case of images: a
topic for a later article on web
server development with Kylix).

After we have set the con-
tent-type, it’s time to return the
actual content. Note that this
includes the <html> and <body>
opening and closing tags. The
simplest example is to show the

program hello;
{$APPTYPE CONSOLE}
begin
writeln('content-type: text/html');
writeln;
writeln('<html>');
writeln('<body bgcolor=ffffcc>');
writeln('<h1>Made in Kylix Desktop!</h1>');
writeln('</body>');
writeln('</html>')

end.

➤ Listing 1: CGI application
hello.dpr.

➤ Figure 1: Kylix Project Options
(Kylix on Linux).

July 2001 The Delphi Magazine 37

line Made in Kylix Desktop Devel-
oper! Just like the WebBroker
application which we made in Kylix
Server Developer last month. The
source code is in Listing 1.

It won’t be a surprise (I hope)
when I tell you that the simple CGI
application from Listing 1 compiles
with Kylix as well as any version of
Delphi (so you can use it to
produce a CGI application for a
Windows web server as well as a
Linux web server). In fact, a lot of
what I’m doing in this article will
work in Delphi on Windows as well
as Kylix on Linux (although the
focus will be on support for Kylix
Desktop on Linux, as you’ll see).

Kylix Deployment
We’re almost ready with the first
web server application written in
Kylix Desktop Developer. It’s now
time to make sure the resulting
application is positioned in the
right directory, so Apache can find
it and execute it. On my machine,
working as root, I have a /home/
httpd/cgi-bin directory that can
contain CGI applications for the
Apache web server. To make sure
hello ends up in this cgi-bin direc-
tory, we need to specify the Output
Path in the Directories/ Condit-
ionals tab of the Project Options
dialog (see Figure 1). Of course, if
you are running the application on
a remote web server, you need to
upload it to your web hosting
account’s cgi-bin directory.

Die-hard Linux fans who prefer
to work with the command line
might be happy to know that most
of the code in this article can be
created using any text editor, after
which the dcc command-line Kylix
compiler can be used to produce
the CGI executable. In this case, we
must use the -E flag to specify the
output directory of the resulting
application (still called the EXE
output directory, by the way), so
my command line is:

dcc -E/home/http/cgi-bin
hello.dpr

Remember to make sure that
kylix/bin is in your search PATH as
well as the library LD_LIBRARY_PATH,
but you can do that by running the

command source kylixpath (where
kylixpath is found in your kylix/bin
directory).

Apache Deployment
We can now compile the hello
application, and it will indeed
result in a hello executable file in
the /home/httpd/cgi-bin directory.
However, before we can execute it,
we first need to tell Apache where
to find the libraries that Kylix web
server applications need. For this,
we need to manually edit the
httpd.conf file as follows:

vi /etc/httpd/conf/httpd.conf

[For all you vi-haters out there, try
the Pico editor, which is a lot friend-
lier! Ed]. Add a single line to the end
of the file, with the following con-
tent:

SetEnv LD_LIBRARY_PATH
/root/kylix/bin

After you’ve modified the
httpd.conf file, you need to explic-
itly restart the Apache web server
as follows:

/etc/rc.d/init.d/httpd restart

Of course, if you are using a remote
web server, you need to check with
the hosting company that the Kylix
libraries are already installed and
the path set up.

Now we are ready to start our
browser and show the hello appli-
cation. The easiest way for me is to
call http://localhost/cgi-bin/hello,

or connect to my Linux web server
from a browser on another PC to
call http://192.168.92.244/cgi-bin/
hello and watch the results (see
Figure 2).

This concludes the first native
Linux web server application writ-
ten in Kylix Desktop Developer.
The nice thing to notice again is
that, apart from configuring
Apache to find the supporting
libraries, we didn’t do anything
that we wouldn’t have do to when
using Delphi. In fact, I could take
the source code from this project
and recompile it on my Windows
PC to produce a standard windows
CGI application.

User Input
Like I said in the introduction, a
CGI application not only produces
standard output, but also reads
standard input to interact with the
end-user (using a browser).
Regarding the input, that’s not
entirely accurate, since a CGI
application first has to examine
some environment variables (set
by the web server when a user
request comes in). First of all, we
need to determine the value of the
REQUEST_METHOD, which can be GET
or POST. In the case of the POST pro-
tocol, the CGI application should
then examine the CONTENT_LENGTH
environment variable to deter-
mine the number of characters to
read from standard input. This

➤ Figure 2: Result of Kylix
Desktop CGI App (Netscape on
Win2000).

40 The Delphi Magazine Issue 71

is the most commonly used
REQUEST_METHOD, by the way. The
alternative, GET, does not use the
standard input, but instead passes
the entire request in yet another
environment variable called
QUERY_STRING. This is slightly faster
than reading from standard input,
but also limited in the amount of
data that you can pass along (I
wouldn’t try to put more than a few
kilobytes inside the QUERY_STRING,
for example).

A list of the most important envi-
ronment variables and their
descriptions is shown in Table 1.
We’ve already seen the first three.
The HTTP_COOKIE is used to obtain
the cookie data for the specific
URL. The REMOTE_ADDR is nice if you
want to keep track of your visitors
(to see if you indeed get different/
unique visitors or repeated visits
by the same IP-address, which
might be the same person). The
SCRIPT_NAME returns the URL of the
CGI application itself, without the
domain, but good enough to call
itself again, as we’ll do later in this
article.

Finally, the PATH_INFO is used by
WebBroker applications to dis-
patch incoming requests based on
the value of this pathinfo. The con-
sequence is that more (different)
functionality can be contained in a
WebBroker application, than is
usually done by several single (but
smaller) CGI applications. There

are many more environment vari-
ables set by the web server, but
these are the most relevant in our
case today.

HTML Form
For the website visitor, who is
using a browser to talk to our web
server application, we must make
an HTML form. This is a bit like a
Kylix form, except that the number
of different control types is rather
limited. Six, to be exact. You can
use editboxes, memo fields,
listboxes (or drop-down combo-
boxes), radio buttons, checkboxes
and buttons. Buttons are used to
fire specific actions, such as reset
(everything you typed in the form
is lost) or request (send the form
input to the server to process it).

As a simple example, let’s make
an HTML form using two input
fields, one named login and
another named password (with the
type password), as in Listing 2. Save
this in a file called login.htm so we
can use it in a minute (see Figure 3
for a preview of how it looks in
Netscape).

Note that we used METHOD=POST in
Listing 2 (so the input fields we
send along will not be visible in the
URL itself, as they would be if you
used METHOD=GET).

Environment
Variable Description

REQUEST_METHOD Specifies whether data for the HTTP request was sent as
part of the URL (GET) or directly to standard input (POST).

CONTENT_LENGTH Number of bytes passed to standard input as content
from a POST request.

QUERY_STRING Data passed as part of the URL, comprised of anything
after the question in the URL, usually the result of a GET
request.

HTTP_COOKIE A collection of cookies for this specific URL (stored on
client machine).

REMOTE_ADDR End-user’s IP address or server name.

HTTP_USER_AGENT Information about the visitor’s web browser.

SCRIPT_NAME The full name of the script being executed (without the
domain part)

PATH_INFO Additional relative path information passed to the server
after the script name, but before any query data, used by
WebBroker in Kylix Server Developer.

➤ Table 1

➤ Figure 3: HTML CGI Form login.htm (Netscape on Windows NT).

<html>
<body bgcolor=ffffcc>
<h1>Welcome!</h1>
<form action="http://192.168.92.244/cgi-bin/login" method=post>
Login: <input type=text name=login>

Password: <input type=password name=password>
<p><input type=submit></p>
</form>
</body>
</html>

➤ Listing 2: HTML Form
login.htm.

42 The Delphi Magazine Issue 71

Unit DrBobCGI
The big question is: how do I easily
examine the environment vari-
ables and, after some internal
actions, determine the input the
user sent to my CGI application?

Without WebBroker, which has
ContentFields, QueryFIelds and
CookiesFields, we’re on our own.
Fortunately, a few years ago I wrote

a unit called DrBobCGI for Delphi
CGI development on Windows
(back in the days when WebBroker
was only part of the Client/Server

unit drbobcgi;
{===}
{ unit DrBobCGI © 2001 by Bob Swart (aka Dr.Bob,

www.drbob42.com }
{ version 1.0 - obtain standard CGI variable values by

"value()". }
{ version 2.0 - obtain CGI values, cookies and IP/UserAgent

values. }
{ version 3.0 - added Linux support for CGI apps with Kylix

Desktop }
{===}
interface
type
TRequestMethod = (Unknown,Get,Post);

var
RequestMethod: TRequestMethod = Unknown;

var
ContentLength: Integer = 0;
RemoteAddress: String[16] = ''; { IP }
HttpUserAgent: String[128] = ''; { Browser, OS }
ScriptName: String[128] = ''; { scriptname URL }
function Value(const Field: ShortString;
Convert: Boolean = True): ShortString;

function CookieValue(const Field: ShortString):
ShortString;

implementation
uses
{$IFDEF WIN32} Windows, {$ENDIF}
{$IFDEF LINUX} Libc, {$ENDIF}
SysUtils;

function _Value(const Field: ShortString;
const Data: AnsiString; Sep: Char = '&';
Convert: Boolean = True): ShortString;
{ 1998/01/02: check for complete match of Field name }
{ 1999/03/01: do conversion *after* searching fields }
var
i: Integer;
Str: String[3];
len: Byte absolute Result;

begin
len := 0; { Result := '' }
i := Pos('&'+Field+'=',Data);
if i = 0 then
begin
i := Pos(Field+'=',Data);
if i > 1 then i := 0

end
else Inc(i); { skip '&' }
if i > 0 then
begin
Inc(i,Length(Field)+1);
while Data[i] <> Sep do
begin
Inc(len);
if (Data[i] = '%') and Convert then // special code
begin
Str := '$00';
Str[2] := Data[i+1];
Str[3] := Data[i+2];
Inc(i,2);
Result[len] := Chr(StrToInt(Str))

end
else
if (Data[i] = ' ') and not Convert then
Result[len] := '+'

else
Result[len] := Data[i];

Inc(i)
end

end
else Result := '$' { no javascript }

end {_Value};
var
Data: AnsiString = '';

function Value(const Field: ShortString; Convert: Boolean
= True): ShortString;

begin
Result := _Value(Field, Data, '&', Convert)

end;
var
Cookie: AnsiString = '';

function CookieValue(const Field: ShortString):
ShortString;

begin
Result := _Value(Field, Cookie, ';');
if Result = '' then
Result := Cookie { debug }

end;
var

P: PChar;
i: Integer;
Str: ShortString;

initialization
{$IFDEF WIN32}
// Tested on IIS and PWS on Windows
P := GetEnvironmentStrings;
while P^ <> #0 do
begin
Str := StrPas(P);
if Pos('REQUEST_METHOD=',Str) > 0 then
begin
Delete(Str,1,Pos('=',Str));
if Str = 'POST' then RequestMethod := Post
else
if Str = 'GET' then RequestMethod := Get

end;
if Pos('CONTENT_LENGTH=',Str) = 1 then
begin
Delete(Str,1,Pos('=',Str));
ContentLength := StrToInt(Str)

end;
if Pos('QUERY_STRING=',Str) > 0 then
begin
Delete(Str,1,Pos('=',Str));
SetLength(Data,Length(Str)+1);
Data := Str

end;
if Pos('HTTP_COOKIE=',Str) > 0 then
begin
Delete(Str,1,Pos('=',Str));
SetLength(Cookie,Length(Str)+1);
Cookie := Str

end
else
if Pos('REMOTE_ADDR',Str) = 1 then // TDM #39
begin
Delete(Str,1,Pos('=',Str));
RemoteAddress := Str

end
else
if Pos('HTTP_USER_AGENT',Str) = 1 then // TDM #39
begin
Delete(Str,1,Pos('=',Str));
if Pos(')',Str) > 0 then
Delete(Str,Pos(')',Str)+1,Length(Str)); {!!}

HttpUserAgent := Str
end
else
if Pos('SCRIPT_NAME',Str) = 1 then // TDM #71
begin
Delete(Str,1,Pos('=',Str));
ScriptName := Str

end;
Inc(P, StrLen(P)+1)

end;
{$ENDIF}
{$IFDEF LINUX}
// Tested on Apache for Linux
P := getenv('REQUEST_METHOD');
if P = 'POST' then RequestMethod := Post
else
if P = 'GET' then RequestMethod := Get;

ContentLength := StrToIntDef(getenv('CONTENT_LENGTH'),0);
Data := getenv('QUERY_STRING');
Cookie := StrPas(getenv('HTTP_COOKIE'));
RemoteAddress := StrPas(getenv('REMOTE_ADDR'));
HttpUserAgent := StrPas(getenv('HTTP_USER_AGENT'));
ScriptName := StrPas(getenv('SCRIPT_NAME'));

{$ENDIF}
// single source cross-platform from now on
if RequestMethod = Post then
begin
SetLength(Data,ContentLength+1);
for i:=1 to ContentLength do read(Data[i]);
Data[ContentLength+1] := '&';

{ if IOResult <> 0 then { skip }
end;
i := 0;
while i < Length(Data) do
begin
Inc(i);
if Data[i] = '+' then Data[i] := ' '

end;
if i > 0 then Data[i+1] := '&'
else Data := '&';

finalization
Data := ''

end.

➤ Listing 3: DrBobCGI cross-platform for Windows and Linux.

July 2001 The Delphi Magazine 43

edition of Delphi: it almost feels
like history is repeating itself, and
Borland needs to re-learn a lesson
about marketing WebBroker!).
Anyway, this unit DrBobCGI did all
the dirty low-level work for us, and
we only had to call a single function
called Value to get the value of a CGI
variable (like login or password if
you use the form in Listing 2), inde-
pendent of the request methods
used (GET or POST). I’ve even added
a function called CookieValue to get
the same functionality for cookies.

Furthermore, we have a few
global variables that are set to the
values of REMOTE_ADDR (the IP
address of the visitor and the
browser) and the HTTP_USER_AGENT
which contains information about
the browser itself. This way, you
can not only keep track of the dif-
ferent visitors, but also of the dif-
ferent kinds of browsers (and
operating systems). See The Delphi
Magazine Issue 39 for more details
about these features, which may
not be required for your tasks. Still,
it’s all contained in DrBobCGI which
is available on this month’s disk
(as well as my own website at
www.drbob42.com/tools) for you
to use, but always at your own risk,
of course.

And the good thing is that I have
now made it cross-platform by
using $IFDEFs, so you can now use
DrBobCGI with Kylix as well as
Delphi (see Listing 3). The main dif-
ferences are the way in which we
can access environment variables
in Windows (where we get all the
name=value pairs using a single
GetEnvironmentStrings) and Linux
(where we have to use getenv for
every environment variable name
we want to know the value of).

CGI Login Example
The only thing that’s left now is
writing a CGI application to ‘an-
swer’ the login.htm form, and
respond to the login and password
information being passed on (for
that we can use the DrBobCGI unit).
This turns out to be very easy as
well, as Listing 4 demonstrates.

Figure 4 shows the output of the
CGI application login running on
Linux. And as I’ve said before, this
could have been a Windows CGI

application just as easily. The only
way by which you can tell that
you’re looking at a Linux hosted
CGI application and not a Windows
hosted one is the extension: there
is none. The full URL is http://
192.168.92.244/cgi-bin/login (on
Windows it would be login.exe). Of
course, you need to make sure that
the HTML form also uses the cor-
rect call (ie never use .exe or .dll
extensions on Linux).

DrBobCGI Additional
Now, let’s see if the other features
inside DrBobCGI also work on Linux.
These include support for cookies
(using the HTTP_COOKIE environ-
ment variable, which makes an
excellent follow-up story for my
website at www.drbob42.com/
examines) as well as the HTTP_
USER_AGENT and REMOTE_ADDR envi-
ronment variables. The latter two
are easy to use: just write the
values of the variables Remote-
Address and HttpUserAgent from

the DrBobCGI unit (we’ll get back
to the SCRIPT_NAME later in this
article):

writeln(‘RemoteAddr: ‘,
RemoteAddress);

writeln(‘UserAgent: ‘,
HttpUserAgent);

The result is not unexpected: some
additional information about the
client’s machine (see Figure 5).

dbExpress Example
After all this regular HTML produc-
ing, it’s time to do something a
little bit more interesting. How
about connecting to a dbExpress
dataset, browsing through the
records inside? Or presenting
them in a grid-like overview? Both
take just a second when using
WebBroker, because you can use
the DataSetPageProducer and
DataSetTableProducer compo-
nents. However, even without
these components, you only need

program login;
{$APPTYPE CONSOLE}
uses
DrBobCGI;

begin
writeln('content-type: text/html');
writeln;
writeln('<html>');
writeln('<body bgcolor=ffffcc>');
writeln('<h1>Welcome ' + Value('login') + '</h1>');
writeln('<hr>');
writeln('Your password [', Value('password'), '] will be safe with us...');
writeln('</body>');
writeln('</html>')

end.

➤ Listing 4: Program login.dpr (which runs on Windows
just as well as Linux).

➤ Figure 4: CGI application login result (Netscape on WinNT).

44 The Delphi Magazine Issue 71

➤ Figure 5: CGI application login
result (Netscape on WinNT).

a little bit of HTML knowledge to
produce the output you want.

Before we start, please do make
sure you’ve read Brian Long’s
excellent article in the May issue of
The Delphi Magazine on configur-
ing Kylix and Apache (especially
the section on making it work with
dbExpress). Basically, you need to
make sure to have done a SetEnv
HOME to a directory that holds a
hidden .borland directory with
your dbExpress configuration files.

InterBase On The Web
Anyway, to start with an easy
example, let’s use dbExpress to
connect to the IBLocal InterBase
database and show the contents of
the CUSTOMER table. If you don’t
know the names and types of the
fields, you can still write generic
code that will take any TDataSet or
derived component and produce a
full HTML file with the contents of
this dataset. For those of you with
little HTML knowledge: an HTML
table starts with <table> and ends
with </table>. A table row (con-
taining a dataset record) starts
with <tr> and ends with </tr>while
a table cell (a field of a record)
starts with <td> and ends with
</td>. I want to start the table with
a row that only contains the
fieldnames, and then follow up
with a row for each record in the
table, showing the values of each
field of each record. The generic
code, which again works on any
TDataSet, can be see in Listing 5.

The next step is determining
which table or query to work with.
If you don’t want to see all the

fields, just make sure you don’t
select them all. Of course, the rou-
tine in Listing 5 can be modified to
your needs. I always find a generic
routine to be a good starting point.

An example CGI application that
just opens the entire customer
table from the IBLocal database,
using a SQLDataSet with the SQL
command select * from customer is
shown in Listing 6. The SQLDataSet
is passed as parameter to the
DataSet2HTML function, where the
dynamic HTML grid is generated.

The code in Listing 6 only com-
piles with CLX (not with the VCL),
which means Kylix on Linux (or
Delphi 6: although I haven’t
received the shipping version yet
I assume it’s OK). The output gen-
erated by this simple application
can be seen in Figure 6.

This is truly the result of SQL as
it’s supposed to be: perform a
query, get the results and display
them. And for that, we only need a
unidirectional cursor, one that
dbExpress provides, as we saw in
previous months.

However, we’re not done yet.
First of all, the
code from Listing
6 should be made

more reusable by turning it into a
routine where we can pass the
ConnectionName as well as the SQL
string. That would make it a more
valuable snippet. The final exam-
ple illustrates this, and involves
maintaining state as well!

More dbExpress
Another example that I want to
share with you shows how to
browse through the result set and
view one record at a time. Browse
through a unidirectional dataset?
Yes, because we only request one
record at a time, we can safely
return and view the previous
record next time.

But first things first: let’s start
with producing dynamic HTML for
a single record from an open
dataset. This code can be seen in

procedure DataSet2HTML(const DataSet: TDataSet);
var
fields: Integer;

begin
writeln('<table border=1>');
DataSet.Open;
write('<tr>');
for fields:=0 to Pred(DataSet.FieldCount) do
write('<td bgcolor=ffffff>',DataSet.Fields[fields].FieldName,'</td>');

writeln('</tr>');
DataSet.First;
while not DataSet.Eof do begin
write('<tr>');
for fields:=0 to Pred(DataSet.FieldCount) do
write('<td>',DataSet.Fields[fields].AsString,'</td>');

writeln('</tr>');
DataSet.Next

end;
writeln('</table>')

end {DataSet2HTML};

➤ Listing 5: DataSet 2 HTML
conversion (cross-platform
code).

➤ Figure 6: CGI application
DrBob42 result (Netscape on
Win2000).

July 2001 The Delphi Magazine 45

var
DataSet: TSQLDataSet;
SQLConnection1: TSQLConnection;

begin
writeln('content-type: text/html');
writeln;
writeln('<html>');
writeln('<body bgcolor=ffffcc>');
SQLConnection1 := TSQLConnection.Create(nil);
with SQLConnection1 do
begin
LoadParamsOnConnect := True;
ConnectionName := 'IBLocal';
LoginPrompt := False;
Connected := True;

end;
DataSet := TSQLDataSet.Create(nil);
try
DataSet.SQLConnection := SQLConnection1;
DataSet.CommandText := 'select * from customer';
DataSet2HTML(DataSet);

finally
DataSet.Free;
SQLConnection1.Free

end;
writeln('</body>');
writeln('</html>')

end.

➤ Listing 6: Connecting to IBLocal InterBase database table customer
(CLX code).

Listing 7 (compare this to Listing 5,
which generates HTML for the
entire DataSet instead of a single
record).

Note that I’m using the AsString
value of each field here, but did not
do anything special for images.
Like I said, that will be handled in a
follow-up article.

Navigating In HTML
The interesting part is navigating a
unidirectional dataset. Is this a
problem, or not? In fact it’s not a
problem. A unidirectional dataset
can only move forward (one step)
or reset itself to the first record,
but remember that our CGI appli-
cation only shows one record at a
time. And every time it’s called, it
will again open the same unidirec-
tional dataset, and position itself to
the correct record (which poten-
tially could be the one prior to the
record we just saw). As a result, we
can scroll back, although we are
re-opening the unidirectional
dataset everytime.

The technique that we’ll use in
this example is based on the fact
that the CGI application itself will
be called with an optional GET
parameter that specifies the
record number to display. The GET
parameter, listed in the requesting
URL itself, is called RecNo, and has
the value 1 for the first record, 2 for
the second record, and so on. If we
want to jump to the last record, we
have a slight problem, because we
don’t know beforehand how many
records are in the dataset. As a
workaround, I’m passing -1 to indi-
cate that I want to go to and show
the last record (this still involves
two passes when we need to posi-
tion the dataset, as we’ll see in a
moment).

The biggest trick, however, is
that the CGI application needs to
call itself. Fortunately, we’ve
already seen that the ScriptName
has the exact value of the CGI appli-
cation (/cgi-bin/DrBob42 in this
case), so we can simply use
ScriptName, and never have to
worry when we move the CGI appli-
cation to another machine (which
would have been the case if we had
hardcoded a domain or IP-address
here).

procedure Record2HTML(const DataSet: TDataSet);
var
fields: Integer;

begin
if not DataSet.Active then DataSet.Open;
for fields:=0 to Pred(DataSet.FieldCount) do
writeln('',DataSet.Fields[fields].FieldName,': ',
DataSet.Fields[fields].AsString,'
')

end {Record2HTML};

➤ Listing 7: Record 2 HTML conversion (cross-platform code).

procedure NavigatorHTML(const DataSet: TDataSet; RecNo: Integer);
begin
if RecNo = 0 then RecNo := 1;
if not DataSet.Active then DataSet.Open;
write('First | ');
write('Prior | ');
write('Next | ');
write('Last | ');
write('Refresh (',RecNo,')
')

end {NavigatorHTML};

➤ Listing 8: Navigator HTML
conversion (cross-platform
code).

Positions Everyone?
Now that we have a Record2HTML
and a NavigatorHTML it’s time to put
the pieces together. This time I will
also make sure to parameterise the
whole thing so we can effectively
reuse all our code so far (it may not
be components like WebBroker,
but it certainly beats reinventing
the wheel every time).

The big routine will be called
DBQuery2HTML, taking two argu-
ments: DB and Query. The first argu-
ment specifies the SQLConnection
name to connect to (like IBLocal),
while the second argument con-
tains the entire SQL query you
want to perform. Once we’ve cre-
ated a connection and dataset and
opened the dataset, it’s time to use
the Value routine from DrBobCGI to

see if a RecNo field was passed on
the URL (using the GET protocol). If
not, then we can assume that
we’ve just started the CGI applica-
tion for the first time, so RecNo
should be set to 1. The SysUtils
unit contains a useful routine that
we can use for this purpose,
namely StrToIntDef. This attempts
to convert the string value
returned by Value(‘RecNo’) and if
it fails for some reason, returns the
second argument (the Def for
default) as an integer value.
Internally this is probably done by
a try..except block, but it saves
me from doing the same in my

46 The Delphi Magazine Issue 71

code (resulting in less code, easier
to read).

The value of RecNo can be any-
thing from 1 to a high number. As a
special meaning, it can also be -1,
because we passed that value to go
to the last record. The problem
that we have when working with

unidirectional datasets is that you
cannot just walk until you reach
DataSet.Eof, because at that time
the last record will be gone
already. You need to stop just
before that. I’ve solved this by
using a two-phase technique: first I
walk through the dataset, counting
the number of records until
DataSet.Eof. Then, in the next pass,
I start from the beginning again but
this time make sure to move the

number of records minus one (so I
end at the last record).

Note that the same second pass
is used when the user advances to
the next record, which also results
in DataSet.Eof to be true. Again,
this means that the user went one
record too far, so the application
should reset the dataset and walk
it again, this time one record less
far.

When the dataset is positioned
correctly, we can finally call
NavigatorHTML, passing the posi-
tioned dataset as well as the RecNo
(which is needed to specify the
previous and next values or RecNo),
followed by the call to Record2HTML
to display the fields and field
values of the current record.

Wrap Up!
Now that we have a DBQuery2HTML
routine that calls Record2HTML as
well as NavigatorHTML (and poten-
tially also DataSet2HTML), the only
thing we need is a main CGI appli-
cation that sets the content-type,
outputs the <html> and <body> ele-
ments, and calls DBQuery2HTML with
the correct ConnectionName and
Query SQL statement.

Note that this solution will be
usable with Kylix as well as with
Delphi 6, and you can use it with
IBLocal as well as any other
dbExpress database that you have
available (although I must confess
I have only tested it against
InterBase on Linux so far: if you
experience any problems, just let

procedure DBQuery2HTML(const DB, Query: String);
var
DataSet: TSQLDataSet;
SQLConnection1: TSQLConnection;
RecNo,i: Integer;

begin
SQLConnection1 := TSQLConnection.Create(nil);
with SQLConnection1 do
begin
LoadParamsOnConnect := True;
ConnectionName := DB;
LoginPrompt := False;
Connected := True;

end;
DataSet := TSQLDataSet.Create(nil);
try
DataSet.SQLConnection := SQLConnection1;
DataSet.CommandText := Query;
DataSet.Open;
RecNo := StrToIntDef(Value('RecNo'),1);
if RecNo = -1 then
begin
RecNo := 1;
while not DataSet.Eof do

begin
Inc(RecNo);
DataSet.Next

end
end
else
for i:=1 to Pred(RecNo) do DataSet.Next;

if DataSet.Eof then // went past Eof, need to backtrack!
begin
Dec(RecNo); // one before Eof
DataSet.First;
for i:=1 to Pred(RecNo) do DataSet.Next

end;
// DataSet2HTML(DataSet);
NavigatorHTML(DataSet,RecNo);
writeln('<hr>');
Record2HTML(DataSet);
writeln('<hr>');
NavigatorHTML(DataSet,RecNo);

finally
DataSet.Free;
SQLConnection1.Free

end;
end {DBQuery2HTML};

➤ Listing 9: DBQuery 2 HTML
conversion (cross-platform
code).

begin
writeln('content-type: text/html');
writeln;
writeln('<html>');
writeln('<body bgcolor=ffffcc>');
DBQuery2HTML('IBLocal','select * from customer');
writeln('</body>');
writeln('</html>')

end.

➤ Listing 10: Performing a query to a IBLocal InterBase customer table
(CLX code).

➤ Figure 7: CGI application
DrBob42 result.

48 The Delphi Magazine Issue 71

me know and we’ll see how we can
solve them).

Listing 10 contains the main
application, in our case performing
the query select * from customer
on the IBLocal InterBase database
(on Linux). Figure 6 shows the final
output.

There are a number of possible
enhancements we can make. For
example, when converting a table
that holds images (or other binary
BLOB data), we may want to write a
‘helper’ CGI application that can be
used to generate the dynamic
image for that particular record,

while the field value for that record
should be turned into an indirect
call to this helper application. I’ll
cover this in a follow-up article.

Next Time
In the past few months, we’ve
examined web server development
using Kylix, WebBroker in Kylix
Server Developer and ‘plain’
DrBobCGI and more in Kylix Desktop
Developer.

In the meantime, however,
Delphi 6 has been launched and, by
the time you read this article, you
may have heard a lot about the new

features called WebSnap and
BizSnap, available in Delphi 6
Enterprise. These will be the
topics for the next few months, and
I promise you that web develop-
ment with Delphi will never be the
same again. So stay tuned...

Bob Swart (aka Dr.Bob, www.
drbob42.com) is an @-Consultant,
Delphi Clinic Trainer and co-
founder of the Kylix/Delphi
OplossingsCentrum (see www.
KDOC.nl) in The Netherlands.

	Console Applications
	CGI Applications
	Content And Type
	Kylix Deployment
	Apache Deployment
	User Input
	HTML Form
	Unit DrBobCGI
	CGI Login Example
	DrBobCGI Additional
	dbExpress Example
	InterBase On The Web
	More dbExpress
	Navigating In HTML
	Positions Everyone?
	Wrap Up!
	Next Time

